
I. Introduction 

The emphasis o f  this paper is determining necessary and sufficient 

conditions under which the linear partial differential equation 

can he transformed tG become either constant ccreff i c i e n t  01- < z f  t h e  b o l i i l o a o i  0': 

r* I < L  

C 11 type. Here we assume that the A ( x )  and E3 ( Y )  are C and consider C 
j k  J 

r i  coordinate chanqes o n  IF: . 

more variables arE due t o  Cotton 1 4 3  artd Fredricts !51. TnFsF I t - C  1 1  1 

attention 1s paid to the f i r s t  order c o e f f i c 1 e ~ 3 t s  6 ( Y )  after thF i t : .  

coordinates are  introduced. 
J 

K, 
I f  there are C coordinates under which ( 1 )  becomes constant Coe'ff ic iEi- t t  

then Fourier transforms i n  the spatial variables yield 
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(3) 
n n 
Z ajk t jSkU- i  Z b . < . U  = F(t,t) du 

at - - -  
J J  j 9 k = l  j = 1  

an ordinary differential equation in U. 

Similarly, i f  there are Cm coordinates in which ( 1 )  takes the form 

( 4 )  

where a and b are constants, then Hormander C61 shows that spatial 

Fourier transforms lead to 

j k  jk 

Under generic conditions, this first order linear partial differential 

equation can b e  sol\!ed bv the metpod o f  cha~azteristics ( 1 . ~ .  c r d ~ r ~ ; ~  

operator can be written as 

2 
R 
z x + x . .  

1 U 
J = 1  I 

For general partial differential o p e r a t o r 5  o f  t h e  f o r m  ( 6 )  Hormander D r o c e E d ?  

to prove neces5ar~ and sufficient conditions for hvpoelliptlcltv 11.e. C 

right hand sides imply Cu solutions). We require that our K‘olmoqorov 

equations be hypoelliptic. Weber 173 constructed fundamental SOlutionS f o r  a 

class of  equations related to those in ( 4 ) .  

In this light the problems consldered irk this paper are: 

i )  Given the partial differential operator ( 6 )  find necessary and 
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00 
sufficient conditions so thst there exist nonsingular C coordinate 

changes (local-near the origin) on I f  under which (6) becomes a 

constant coefficient partial differential operator. Standard 

differential geometry results (e.g. Spivak CBI) are employed and 

the results are of no surprise. The conditions are derived here 

f o r  the sake of completeness. 

1 1 )  Given the partial differential operator ( 6 )  find necessary and 

sufficient conditions so that there erist nonsingular C coordinate 

changes (local-near the origin) on IF under which X 1 9 k 2 p - . . 9 X  i n  

( 6 )  are transformed to constant vector fields and Xo becomes a 

cc 

n 
Ill 

linear vector f i e l d .  This makes the partial differential operatcli 

( 6 )  o f  C:olrnoqcrov type, i f  the hvoaellipticity K 0 d i t i u i ) s  o f  

tiormandel ai-E sat i s f  1 ed ~ 

The spatial cp~ratnr i n  ( 4 )  is a Kolmoqo!-ov operato! it : - .  . , '  , .  

hypoelliptic. 

, -. - WE remark that both problems 1 ! and i i ! c a n  be qenet -a i  1 z d  ; . , I  ,.,!<- 

IT1 - F . .  
- c  . . 'r' c 

+ X . ,  but we s h a l  1 concentr2i.c 
I :  

rjartial rjiffPrentis! operators ;i - - .  

,=! .l J " 1  

o n  the f o r m  : & I .  Moreover ,  w e  255~rne t h a t  XI , Y . ? ,  . . . , X  s r c  i 1 $ .+ -> '  '. . 
m 

i ndependciit . 

Our pi incipl~ tools are taken f i o m  the 

However, the purpose of this paper 15 

controllability of  cvstems o f  nonlinear o r d  

hypoelliplicity of partial differential 

field o f  systemc. ano co!itrol. 

not to draw a parallel between 

ria1-v differential equations and 

equations, as this has been well 

established in the literature and in conference presentations. 

As we mentioned previously, problem i )  is straightforward. Our w o r k  on 

problem i i )  is analogous to the study o f  coordinate changes to transform a 

nonlinear control system on R n 



t o  an n-dimensional controllable linear system 

.. 

I - 
(8) x = Fx + Gu. 

dx 
Here i = dt - , f,g ,g ,...,gm are C'.' vector fields on Rn, f ( 0 )  = 0, u =  1 2  

( u 1 , u 2 ,  ... 'u ) consists of real-valued functions, F is an nxn constant 

matrix, and G is ar! nxm constant matrix. A l s o  f,F, and u are obviously 

different objects in our control discussion than in our p.d.e. discussion. 

m 

We rely heavily on the results o f  Krener L9J and REspondek [ l o ] .  and, 11-1  

fact, our research essentially ; i ! [ ~ ~ e s  their results from the ordinar Y 

differential equation setting to the partial differential equatiop sett :r .c.  

Nonlinear control system i 7 i  15 replaced bv  eouation ( 6 )  with X tski1(1- '  +!-*c, 

place of  Q J = 1,; , . ... m .  and X t a i i n q  the 31act -  of f .  The li+=+r r\ ;c-?~.- 

( 8 )  is replaced by tne b . a i r ~ o a ~ r o ~ '  partial diffcrFrstial opf ; ra t .o r  

1 'J 

IT! c C - 
( 5 !  - 7 r  e X '  . 

{I ' 

where each is a constant vector field an3 X 1 %  linear. Here ;, , f  % .  . 

Correspond to the T columns of G and 'z corresponds Fic in (8 ! .  i.!? ;;c,i-,t t t l r  

span o f  the Lie brackets X ,CXo,X.l,...,(ad X C v X  . I ,  j=1,2 ,.... a tc .  tee F " .  

so we make the corresponding assumptions on the L i e  brackets of vector fields 

j +  .I 

J 0 3 L '  

0 

- 

- n-1- - - -  
I J - 1  

in (6). A s  noted before we also suppose that X , , X 2 ,  ... , X  are liriearl.. 

independent . 
N4 

Section 2 o f  this paper contains hasic definitions ahd consioel-aticj!-, o f  

those 1 inear partial differential operators wtlirh can be made constant 

coefficient. In section 3, necessary and sufficient conditions a r e  d w i v e d  

which classify those linear partial differential operators that can be m o v e d  

to the Kolmocjorov type. 



11. Constant Coefficient Operators 

We begin with a set of appropriate definitions. 

If X and Y a r e  Cm vector fields on R , then the L i e  bracket  o f  X 
n and Y 

i s  

FY ,* X 
ax if E 

[X,YI = - - x  - I - Y ,  

U Y  

B x  ?X 
where - and - " are Jacobian matrices, x heinq the '\,ariahl~ for iF". 

e t c .  can he taken. 4 standard notation i c -  

0 (ad X , Y )  = 1 

t h e  vec to r  field X ac- 

L h = ',dh,f ' .  x 

Successive L i e  derivatives a r e  

L X h  2 = LXLXh 

Moreover, the Lie derivative o f  t h e  one f o r m  d h  with respect to X is - ----- 



The three types o f  Lie derivatives satisfy the formula 

(10)  LX<dh,Y'> = <Lx idh),Y> + idhyCXyY1). 

We motivate our study b y  the followinq example. 

Example 2.1. Cons der the partial differ-evtial operator 

3 or F. . The l o c a l  coordinate change  ine.31- tnr- o ! - i g i n )  

( 1 3 )  

T h i s  is discovered in the followiliq w a y .  F i r s t  we write l i i !  < . -  

1' x o 3  Since X and X are linearly independent and the Lie bracket C X  
1 0 

5 0 ,  standard differential geometry results (see C81) implvl that the 

transformation (12)  takes 



Hence, the partial differential operator ( 1 1 )  is moved t o  t h e  constant 

coefficient form ( 1 3 ) .  

We now prove our  result concerning transformation to constant 

coefficient operators. Again, this result is trivial from the differential 

geometry viewpoint. 

Theorem 2.1. G i v e n  the CrB partial differential cperator o n  IT’” 

( 1 7 )  

where X o , X 1  , X  ,... X , are linearlv independent f o r  mc,n and  X I  , F 2 ,  . . . 9 ar  E. 
2 m 

linearly independent for m=n, there erists a non-singular ( l o c a l  co~rdinatc 

change on F under w h i c h  X ( ) , X I > .  . . , X  become constant v e c t o r  field5 it 31-11:  

c j n i y  if 

n 
r 

. .. -:.- 
t a k  1 nq 

i .  
i .  

if and only i f  ( 1 8 )  is satisfied. 

I f  rn = n ,  we can move 
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i f  and o n l y  i f  E 0 for all l < r , s < m .  Setting 

we find the only possible nonzer~ colurrln of  

W E  now stud:. o u r  problem i i ) ,  the main considpration o f  this p a ~ e : .  

111. Kolraogorov Operators 

Fl 

We examine the partial differentlal operator ( b )  2- - X + where 
J 

1=1  

I !  xl,X2,...,X are Iinearlv 1ndependLni and X .  .vanishes dt the oriqirl 11-1 iT, . 

We derive conditions under w h i c h  C, coordinate c h a n g e 5  (local-near thE 

rn ( !  

t. 

o r i g i n ,  exist taking ( 6 )  to the KolmoQot-ov operatoi- ! 9 ) .  

6s stressed in the introduction, the main contrihulion of this paper 1 5  

realizing that the results of  Krener L73 and Eespondek L 1 0 1  1 1 - 1  the non l in t : a l  

systems ( 0 . d . e . )  and control area can b e  applied t o  partial differential 



.,... . . .. '- . .  

operators 

( 1 9 )  a n 
+ Z: B . ( x )  - a2 n 

J dx 
j 9 k=l J j = 1  j 

A j k ( x )  dx.dxk 

The linear controllable system 

( 2 0 )  x =  

is replaced by the hypoelliptic KO 

(with a and b constant) 

- 

j k  j k  

n 
( 2 1 )  

FF + Gu 

moqorov partial differential operatoi- 

Of course we shall study operators ( 1 9 )  and ( 2 1 )  in o u r  v e c t o i -  field 

notation. F i r s t  WP wish to examine parallpis Letween s y q t n -  $2: )  ~ I I J  

operator ( ? I ! .  

For the control svstem t 2 u )  the t,ronecker indic~s and ~ i g r n . a i c i e . s  c ~ t  

F matrices a r e  invariants under coordinate changes. F o r  tbe  cpera toy  ( p i  b -  
._ . 

introduce kolmoqorov indices and note that these and t h e  ~ i o e . 7 . ~ : ~ ~ :  .f tQ. L ,  

t-oi-ms f o r  ( 2 0 )  will occur in o u r  w o r k . .  

- -  
If the matrix A = (a ) in ( 2 1 )  ha5 rank m, let i o , X l  , X 2 * . . . 9 i  ti- 

j k  lli 

m 2  - - 

linearly independerlt vector fiFlds 5.0 that ( 2 1 )  becomes 2 X .  + X - .  WF set 
..I j = t  J 

= Jacobian matrix o f  the vectoi- field X . .  I f  the partial differpntial 
'L) 

11-1 - 
operator i n  (21 )  is hypoelliptic (in this case i ,BY , . . . v ~  r v 1 = 

1729...9m9 span [P J we introduce t h e  following process: 
I !  

Y l  
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1 )  Write out  the gr id  
- - - 
x1 x 2 . . .  x m  

Ex, BY, . . . BXm 

B2x ,  

g- 1 - 

B2x2 . . . B2Xm 

. Bn-l- 
X m 

Bn- 1 - x2 . . 
2 )  Start at x and move left to right across the first I - o w ,  thpn 5 , t a r t  

1 

at EX and move across the second r o w ,  etc. 
1 

3 )  Throw out any vector field that is a linear combination o t  the 

preceding vector fields in the qrid. Discard all vectcr f l E ! d ‘ :  i 3  

thF column below th!s vectoi. f ? E l G .  

a!: others hade tieen diccarded. 

t t-, 
E 
J )  Let i = number o f  entries remaining I,-[ the J colunli-t of t h e  0 1  1d  

J 

- - 
Lj  Renumber  r I 3 ’ X 2  ,..., X , i f  n e c e ~ ~ a r y ,  50 that t1.i.f I 2- . a . u . ( :  - TI . 

(I1 

Uef - The inteqez-s C 1  - t2) . . . , ._ ,’ a r e  called the k’cimogor-ov indices o f  +hi 

partial differential o p e r a t o r  ( 2 1 ) .  If the v e c t o r  f i e l d  notation f G ! -  (21) i.; 

(TI 
- 

m 2  - - 
‘ “ . j  2 X + X w e  also have the integers t l , ~ u 2 ,  ..., C associated witkt ( 5 1 .  0 m 

J = 1  

By assumption 4’ + C +...+ ( = n. 
1 2 rn 

m -  
We ask if the partial differential operator ( 6 )  Z X‘ + Xo is a 

J j = 1 

coordinate change away f r o m  the Kolmoqorov  partial differentia! operator ( 9 )  

m 
2 x .  + x havinq given indices “ , t 2 ,  ..., Y . Before stating the qenerai 

j = 1  

-2 
3 0  m 



theorem we present an example. 

Example 3.1. Consider t h e  partial differential operator 

- x 2 + 2(x2-x3) 2 x ) a 
3d>! + - + (2+x ) - + 

I.2 3 1 

a2 a2 
3 ax3 4 3 6x2dx3 

( 2 2 )  4x - a2 + 4x 
ax2 

2 

3 on IF: . We write this as 

I + x + 2 ( x  - x  ) x - 3 dx 2 2 3 3 1 "  e x  (23) j2* 3 - dx 2 + q F x 3  ax 3- - (jrx+ 2 -j dx3. + jx 2 - x 3  
r.7 3 d 

Letting 

x =  
1 

'- 0 1 
- "31 1 x o  - 

2 2 
K 2 3  - x  + 2 ( x  2 3 3 1  - x  ) x  

y,3 

w e  f i n d  ( 2 3 )  becomes 

2 
1 ( 2 4  1 ).: + XC) , 

The l o c a l  coordinate channer 

2 4  - 
- x 3  + 2 x  Y - 

1 = 3 2 2 '3 Y 3  
- 2 

= > : - x  = L  Y 
- 

1 
xo - x 2  2 3 

take ( 2 4 )  t o  

- 
x =  

1 
where and x = 

1 
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This yields the Kolmogorov partial differential operator 

( 2 6 )  

Since 

d2 - d + x - *  - 3  - + x 
dx - 2  2 - -  3 - -  ex 2 dX 

1 3 



2- 3 - - 
XI, BX1, B XI span rT( and the single Kolmogorov index is e = 3 = n. 1 

In equation ( 2 4 )  we remark that 

and 

. .  . .  

We now state and prove our main result. The qeneral p r o o f  will follow 

from analogous results from C93 and C l O I ,  but we shall present a p r o o f  i l i  

the case r! = 1 for some sort o f  completeness. 

m 
2 with 0' Theorem 3.1. The linear p a r t i a l  differential operator (6) L X + X 

. .  + 

J = i  
T- x 1  9 X 2 9 . . . , F ,  linearly independent ar! $" and X .  (13) = O, can b~ transformed b, .  

nonsingular coordinate changes ! l o c a l - n e a r  the o r i g i n )  to the  C.01rnaqorcr~ 

partial differential operator ( 9 )  L '2 + x having indices ; , ( C  , . . .+ t if 

and only if 

IT1 C! 

IT1 

1 9 (r! j=l  

i i  

X o ,  ) i l  j , X 2 ,  I: x o ?  X 2 : l I , .  . I '  
, - . I  the set I X  , C X O , i  I,".., (a6 

1 1  1 

1 5  linearly independent. 

and $) the Lie brackets o f  e v e r y  p a 1 1  o f  vector-s f i e 1 a . i  i r  

P r o o f ,  !For m = 1 ,  4 =n, and the operator Y , 2  + X ) :  

n- 1 
1 CJ - 

) are 1 inearly independent and have 2ei-c. Since X ,, I X o , X  ,.. . (ad X O 9 X  

-12- 



L i e  brackets,  we have coordinates so t h a t  

x l  becomes 

-1 3- 
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- 
Hence X o  is a linear vector field as promised and x + x is a Kolmogorov 

1 0 

partial differential operator. 0 

In the  above p r o o f  

- 
( 3 0 )  x =  

1 

1. 

+ io 1 5  in a canonical f c r m .  I - -  ..E sei 1 
and x 

that a second o r d e r  iiriear partiel differential operator he a coorrlinat~ 

change away from a k.olmogorov operator. 

Future research will be in two directions: 

1) Expand the transformations used to include "appropriate types" o f  

feedback. This research is presentlv underway, and first thour~hts 

were to include results in this paper. However, the p r o c e s s  o f  

feedback, a5 applied in transformation theory, is not well 

_' -14.- 
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c21 

C3! 

E4 1 

c 5 3  

C63 

E71 

C83 

c91 

c 101 

addressed in the partial differential equation literature, where 

coordinate changes are standard fare, Therefore, we decided that 

separate papers are appropriate. 

Extend all results t o  the discrete setting. A Ph.D. student o f  the 

first author is currently working on this project. 
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